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A primary goal in any drug design strategy is to predict the activity of new compounds. 
Comparative molecular field analysis (CoMFA) has been used in drug design and three-
dimensional quantitative structure/activity relationship (3D-QSAR) methods. The CoMFA 
approach permits analysis of a large number of quantitative descriptors and uses chemometric 
methods such as partial least squares (PLS) to correlate changes in biological activity with 
changes in chemical structure. One of the characteristics of the 3D-QSAR method is the large 
number of variables which are generated in order to describe the nonbonded interaction energies 
between one or more probes and each drug molecule. Since it is difficult to know a priori 
which variables affect the biological activity of the compounds, much effort has been devoted 
to developing methods that optimize the selection of only those variables of importance. This 
work focuses on some of the aspects involved in the selection of such variables, applied to a 
series of glucose analogue inhibitors of glycogen phosphorylase b, using the program GRID to 
describe the molecular structures and using a method of generating optimal partial least squares 
estimations (program GOLPE) as the chemometric tool. This data set, consisting of over 30 
compounds in which the three-dimensional l igand-enzyme bound structures are known, is 
well suited to study the effect of different data pretreatment procedures on the final model 
used for the prediction of new drug molecules. By relying on our knowledge of the real physical 
problem (i.e., using the combined crystallographic and kinetic results), it has been shown that 
suitable data pretreatment and variable selection have been found that does not result in a 
significant loss of relevant information. Moreover, by using an appropriate scaling procedure, 
GOLPE variable selection minimizes the risk of overfitting and overpredicting. 

Introduction 

Since the publication of the work of Cramer, compara­
tive molecular field analysis (CoMFA)1 has become 
widely used in drug design and QSAR methodologies. 
The approach provides acquisition of a large number of 
quantitative descriptors and uses PLS2 methods to 
correlate changes in the observed biological activity with 
changes in the chemical structure for a series of 
potential drug molecules. 

Although these methods have been of general use, 
there are a number of practical problems in their 
application to a dataset of interest. The results depend 
critically on the conformation and alignment criteria 
chosen for the drug molecules, on the chemical data used 
to describe the interactions (i.e., on the chosen probes), 
and on the validation method used in the chemometric 
tool. It is difficult to know a priori which of these 
considerations are more significant, since these prob­
lems are data set dependent and change their relative 
importance with changes in a series of drug molecules. 
Selection of the most informative variables, for example 
the interaction energies between a probe and a molecu­
lar structure, is a general problem which is always 
present in a QSAR study. 

Traditional computational methods used in 3D-QSAR 
(CoMFA,1 HINT,3 COSMIC,4 DOCK,5 LUDI6) produce 
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a large number of molecular descriptors (or variables 
such as force field parameters, interaction energies, or 
local minima distributions) which may or may not 
contribute to the final result. In some cases, it may be 
obvious which variables have a positive or negative 
effect on the prediction capability of the model. On the 
other hand, Some variables may produce only subtle 
changes in the final model or have a secondary but not 
easily distinguishable effect. It has been shown with a 
large number of variables that keeping irrelevant 
variables in the model can in fact have detrimental 
effects on the predictive ability of the model.7 Therefore, 
it would be useful to find a method which successfully 
selects only those variables which have the most sig­
nificant effect on the biological activity. 

Developments in statistics have provided new meth­
ods of measuring the validity of a model. These methods 
are based on simulating the predictive power of the 
model and work by creating a number of slight modi­
fications to the original data set and estimating param­
eters from each of these modified data sets. The effects 
of the modifications to the data set may be assessed 
according to how well compounds within the dataset are 
predicted by the model and, further, by calculating the 
variability of the predictions for novel compounds using 
each of the resulting models.8'9 Using these tools it is 
possible to compare the predictive power of different 
models or, within the same model, to estimate a set of 
unique parameters (variables and optimal number of 
components) necessary to maximise the predictive power 
of the model.10 
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More recently, an advanced variable selection proce­
dure called GOLPE11 has been used in 3D-QSAR stud­
ies. The procedure is based on variable selection which 
evaluates the effects of individual variables on the model 
predictivity. This can lead to the determination of 
precisely which variables are relevant to the problem 
under study. Consequently, only a few significant 
variables (as determined by the GOLPE procedure) are 
extracted from large amounts of more redundant infor­
mation produced by 3D-QSAR methods and are used 
in subsequent analyses. 

The primary aim of this work was to determine 
whether or not there exist a set of general rules for the 
pretreatment of the data that will result in a reliable 
method of variable selection for optimal predictivity. The 
present paper discusses some of the aspects involved 
in the selection of such variables using the GOLPE 
procedure. This procedure has been shown to be a 
powerful tool for evaluating and selecting the important 
variables which contribute positively to the predic­
tivity.11-16 However, as with all statistical methods the 
results from GOLPE depend on some method of pre­
treatment of the data. Unfortunately, some of these 
methods can lead to overfitting and chance correlations. 

Different procedures were compared using a series of 
36 compounds whose enzyme inhibitory potencies have 
been measured and whose X-ray structures bound to 
the same enzyme (glycogen phosphorylase = GP) have 
been determined.17,18 Consequently, problems arising 
from the conformation and alignment of the ligands 
have been directly addressed. Furthermore, since the 
three-dimensional structures of the complexes are known, 
it is possible to assess more accurately the predicted 
variables and regions important for inhibition. 

Methods 

Data Set for Analysis and Validation. An ap­
propriate series of molecules was required in order to 
compare the different ways in which to perform the 
GOLPE analysis. This series should be without super-
imposition problems and with the correct conformation 
for each molecule; with a good range of biological 
activity; with sufficent accuracy in the activity values; 
and, finally, with information about both the ligand— 
receptor interactions and the nature of these interac­
tions. 

Such a data set has been provided by studies on the 
design, synthesis, kinetics, and three-dimensional X-ray 
crystallographic results of a number of ligands com-
plexed to glycogen phosphorylase.17,18 It is known that 
a-D-glucose is a weak inhibitor of GP6 CKi = 1.7 mM) 
and acts as a physiological regulator of hepatic glycogen 
metabolism.19 Glucose binds to phosphorylase at the 
catalytic site and results in a conformational change 
that stabilizes the inactive T state of the enzyme. It 
has been suggested that in the liver, glucose analogues 
with greater affinity for GP may result in a more 
effective regulatory agent. Hence, all the ligands stud­
ied were glucose analogues. 

Over 50 compounds have been tested, 36 of which 
show the same mechanism of action (by binding in a 
similar fashion whereby the T state of the enzyme is 
stabilized and to the same site of GPb as glucose itself 
since there is the possibility of multiple binding sites) 

and cover a wide range in the inhibitor activity (Table 
1). The binding of each of 36 compounds to GP6 in the 
crystal has been studied to 2.3-A resolution, and the 
ligand—phosphorylase complexes have been refined 
using crystallographic least-squares minimization to R 
values less than 0.20 using X-PLOR energy.20 Some of 
the factors and the regions in the active site of GPb that 
are important for effective inhibition have already been 
established.1718 In particular, hydrogen bonding either 
directly to the protein or through water molecules 
contributes significantly to an increase in the binding 
energy and to a decrease in the inhibition constant (KO. 
The experimental errors in the K values17,18'21 deter­
mined for each ligand have an average error of ±14%. 

This series of molecules eliminates doubts arising 
from the alignment criteria and from uncertainties 
about the conformations of the bound ligands. The 
X-ray structures of the 36 glucose analogue—phospho­
rylase complexes show that the glucose ring in each case 
is maintained in the same region of the phosphorylase 
active site due to a complementary hydrogen bonding 
network between the glucose fragment of the ligand and 
the active site residues of the enzyme. The substituted 
atoms at the a- and /3-Cl positions of glucose occupy 
different regions of the enzyme active site, and it is these 
regions of the enzyme that have been targeted in order 
to further enhance the inhibition. 

This data set superimposed by the enzyme itself is 
well suited to study the effect of different procedures 
on the final model in the step of variable selection. 

GRID Force Field. The program GRID22"24 was 
used to calculate the interactions between a small 
chemical group (for example the phenol hydroxy probe) 
and each of the 36 compounds (the targets). GRID is a 
computational procedure for detecting energetically 
favorable binding sites on molecules of known three-
dimensional structure. The energies are calculated as 
Lennard-Jones, electrostatic, and hydrogen bond inter­
actions between the probe group and the target struc­
tures, using a position-dependent dielectric function in 
order to modulate the strong electrostatic interaction 
between charged centers, since solvent molecules were 
not explicitly included with the targets. 

GRID contains a table of parameters to describe each 
type of atom occurring in each of the ligand molecules. 
These parameters define the strength of the Lennard-
Jones, hydrogen bond, and electrostatic interactions 
made by an atom and are used in order to evaluate the 
energy functions. 

GRID probes are very specific.25 They give precise 
spatial information, and this specificity and sensitivity 
are an advantage since the Probes may then be repre­
sentative of the important chemical groups present in 
the active site provided that the statistical method used 
for the analysis can distinguish between different types 
of interactions. 

In this work, a hydroxyl group bonded to an aromatic 
system was chosen as the primary chemical probe (the 
OH probe). This group is capable of donating and 
accepting one hydrogen bond. The electronic configura­
tion of the OH probe is defined such that it interacts 
with the jr-system of the aromatic ring, making the 
hydrogen-bonding pattern different from that of an 
aliphatic hydroxyl probe. The OH probe shows an 
intermediate polarizability value between those of other 
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Table 1. Database of Glucose Analogue Inhibitors for Glycogen Phosphorylase b 
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similar oxygen probes and it makes strong hydrogen-
bonding interactions which may account for the shape 
of the interaction regions with the target structures. 
This choice of probe was influenced by the presence of 
such residues in the GPb catalytic site. 

Other probes selected for this study include the 
methyl group CH3, the sp2 carbonyl oxygen C=O, and 
the sodium cation Na+ probe. The CH3 probe has the 

electronic properties of an sp3 carbon atom. The GRID 
parameters for this probe assume that it does not 
interact electrostatically with the target and it does not 
form hydrogen bonds. Thus the GRID calculation yields 
the energies of steric interaction between the target 
molecule and the probe. The carbonyl oxygen of the 
C=O probe can accept one or two hydrogen bonds. The 
choice of this probe (as with the OH probe) was 
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influenced by the known residues in the active site of 
GPb. The Na+ probe carries a +1.0 charge and has the 
potential for charge—charge interactions. This probe 
was selected due to the presence of glutamic and 
aspartic acid residues in the catalytic site thus providing 
the possibility of assessing charge-charge interactions 
within the protein. 

The energy calculations were performed using both 
1.0- and 2.0-A spacings between the grid points in a 
rectangular box measuring 20 x 20 x 21 A. The GRID 
origin and axes were chosen such that all the atoms of 
the target structures were included when they were 
maintained in the conformation when bound to the 
protein and an additional region which would include 
several active site residues of GPfe (within 4 A of the 
target structures) although the protein residues were 
not explicitly included in the calculations. A cut-off of 
+5 kcal/mol was used in order to make the data more 
symmetrically distributed about zero, since GRID ener­
gies can be very large and positive when the probe is 
close to the target. 

With the chosen probe at the first grid point, (xyz), 
the overall nonbonded interaction energy EXYZ between 
the probe and the target is calculated as 

^XYZ — -^LJ + -^El + -^HB 

where Eu is the Lennard-Jones potential energy, E^\ is 
the electrostatic, and £HB is the hydrogen bonding 
energy.24 The calculation is repeated with the probe at 
each successive grid point. 

One GRID calculation produces 8400 interaction 
energies for each probe with each of the 36 compounds. 
Each set of calculated interaction energies contained in 
the resulting three-dimensional matrix from GRID can 
be rearranged as a one-dimensional vector of variables 
in two steps.25 In the first step, the matrix planes are 
cut and positioned side by side producing a two-
dimensional table with 20 rows and 20 x 21 columns. 
Then, in the second step, the 20 rows are juxtaposed 
such that a one-dimensional vector is produced. Thus, 
the interactions between each probe and each compound 
are described by this one-dimensional vector which is 
conventionally used as input to the program GOLPE 
and the computational analysis performed as described 
below. 

The Partial Least Squares (PLS) Model. In the 
context of 3D-QSAR, the biological activity may be seen 
as a function of the physiochemical characteristics (such 
as electronic properties or energies of interaction within 
a given force field) of the compounds of interest. The 
need to convert such numerical data to useful informa­
tion has led to the development of methodologies that 
rely on statistics and applied mathematics. 

The PLS model is a two-block projection method that 
relates a matrix X (containing the chemical descriptors) 
to a matrix Y (containing the biological activities) with 
the aim of predicting the values in Y from the informa­
tion contained in X.26 The method provides an ap­
proximation of an X matrix in terms of the product of 
two smaller matrices T and P ' as follows: 

X = I * + T P ' + E (1) 

where E is a residual matrix, i.e., part of the data that 
is not explained by the model. The Y-block matrix is 

modeled in a similar manner to the X-block by, 

Y = 1-y + U-Q' + E (2) 

The data matrices (X and Y) are projected down on the 
smaller matrices (T and U) with orthogonal columns. 
The projections can be calculated for any given number 
of variables, and, in fact, the projections become more 
stable for a given number of compounds the larger the 
number of relevant variables that are included. After 
the projection, the matrix T is used (instead of the 
original matrix X) to explain or predict Y, since T has 
fewer and orthogonal columns and therefore give rise 
to a numerically stable model. The relation between U 
and T (in eqs 1 and 2), the "inner relation", can be 
modeled by 

U = T B + H (3) 

where B is a diagonal matrix and H is a residual matrix. 
Recalculated y values for each compound in the 

training set are obtained from the x data vector of each 
compound by insertion into the PLS model in the 
sequence, 

eq 1 eq 3 eq 2 

X - T - U - Y 

The prediction of y values for new compounds uses the 
same sequence but leaves out the x data vectors in the 
derivation of the model. 

The matrices T and P ' extract the essential informa­
tion and any patterns contained in X. By plotting the 
columns in T (score plot), a picture of the dominant 
"object pattern" of X is obtained (i.e., a two-dimensional 
view of the compounds in the chemical property space). 
By analogy, plotting the rows of P ' (loading plot) shows 
the complementary "variable pattern" which can give 
information about how the chemical properties should 
be modified in order to enhance the activity depending 
on the size and sign of the vectors p. The number of 
rows in P ' and the columns in T are equal to the number 
of factors and can be determined by cross-validation to 
give the model optimal predictivity.27 

Generating Optimal Linear PLS Estimation 
(GOLPE). GOLPE11 is defined as an advanced variable 
selection procedure aimed at obtaining PLS regression 
models with the highest prediction ability which relies 
on the validation of a number of reduced models on 
variable combinations selected according to a factorial 
design strategy. It has been shown7 that keeping 
irrelevant variables in the model gives rise to poorer 
predictions, since such variables represent only random 
variations. Therefore, in problems where the number 
of variables is large, it is necessary to use only relevant 
variables to improve the accuracy of the predictions. The 
power of a GOLPE procedure will depend on some 
method of pretreatment of the data, and this paper 
reports the results of five different data pretreatment 
methods. 

The first step in the GOLPE procedure, as applied to 
a 3D-QSAR problem, is a normal linear PLS model 
using all the variables, followed by variable preselection 
according to a D-optimal design28'29 in the loading space. 
With a large number of variables much of the informa­
tion is redundant, and selection of variables in such a 
way that redundancy is reduced but collinearity is 
retained is a typical constrained mathematical problem. 
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D-optimal designs are appropriate for handling con­
strained problems, and the D-optimality criterion as 
implemented in GOLPE11 enables variables to be se­
lected such that most of the redundancy is reduced but 
sufficient collinearity among the remaining variables is 
maintained in order to satisfy the PLS algorithm. It 
should be noted that D-optimal designs usually work 
on objects in variable space;30 however, in this case the 
objects are the original variables described by their 
loadings in LV space. 

An important result of the first step in GOLPE is the 
determination of how many significant factors are 
present in the data. These factors, called latent vari­
ables (LV), are often directly interpretable as the 
number of independent chemical effects that influence 
the biological response. The LVs are linear combina­
tions of all the original variables in which each variable 
participates according to its loading. In 3D-QSAR the 
loadings are usually rotated back into the original 
variable space of the molecules and take the form of 
coefficients of a linear polynomial for all the variables. 
In this study, the coefficients correspond to grid loca­
tions. These coefficients are displayed as contour maps 
which are representative of the important 3D regions 
characterized by the model. 

The dimensionality of the LV is selected according to 
a cross-validation procedure27 (whereby part of the data 
set is deleted from the modeling, a model is calculated, 
and predictions are made for the deleted data which are 
compared to the actual values, etc., until each data 
element has been kept out once) and verified graphically 
for homogeneities in the score plots. It is necessary to 
select the appropriate dimensionality since too few 
model dimensions will lead to a loss of information and 
too many will result in noise in the model. In either 
case, the prediction of the activities of new compounds 
will be less than optimal. 

The second step in the GOLPE procedure is the 
building of a design matrix, which has the number of 
columns equal to the number of variables and the 
number of rows slightly greater than the number of 
variables and contains combinations of the variables 
according to a fractional factorial design (FFD) strategy. 
In the design matrix the combination corresponds to 
either the presence (+) or absence (—) of the original 
variables. The design matrix is then used to test the 
prediction ability of the reduced models, each involving 
a different combination of variables, including only the 
"plus" and excluding the "minus" variables. For each 
such combination, the prediction ability of the cor­
responding PLS model is evaluated by means of the 
standard deviation error of prediction (SDEP)10 defined 
as follows: 

JV 

SDEP - [J(K - yipjW
2 (4) 

i = i 

where yi = experimental value (in this case, In K), ytpni 

= predicted value, JV = number of objects (in this case, 
number of compounds). 

The value of SDEP is calculated using a combination 
of cross-validation and bootstrapping.11 The data set 
is divided into several groups in a random way, and the 
computation is repeated several times, as in bootstrap­
ping, but each group is excluded just once in each run, 

as in cross-validation. The higher the number of 
random ways of forming groups, the more stable the 
value of SDEP. The SDEP parameter is calculated for 
each excluded group based on the model derived from 
the remaining groups. The value of SDEP is never 
exactly reproducible, but it converges to an asymptotic 
value. The number of latent variables associated to the 
global minimum value of SDEP is selected as the model 
dimensionality that gives the best predictions. 

The procedure based on FFD as outlined cannot work 
properly since there is a risk of selecting, as relevant, a 
variable which is not. In full factorial designs, the 
specific effect of a single variable can be evaluated 
unambiguously, however, at the expense of an increase 
in computation time. In order to estimate as precisely 
as possible the significance of a single variable effect 
on predictivity, a number of dummy variables can be 
introduced in the design matrix. These dummy vari­
ables are not actual numbers. The dummy variables 
are defined specific columns in the design matrix 
inserted among the true variables. Since these dummy 
variables are not true variables, they are not used in 
the variable combinations evaluating the predictivity of 
each row of the design matrix. However, the introduc­
tion of these dummy variables does allow comparison 
between the effect of a true variable and the average 
effect of the dummies. 

The third step in the GOLPE procedure is the com­
putation of the predictivity for each variable combina­
tion and the evaluation of the effect of each variable on 
the predictivity. Only the significant variables are 
selected for improving the predictivity of the model. The 
variables can be classified into four distinct categories: 
the dummy variables artifically introduced, variables 
with a definite positive effect on the predictivity, vari­
ables with a definite negative effect, and variables with 
uncertain effects. Variables exhibiting a positive effect 
on the model predictivity are those which show an effect 
statistically higher in absolute value than the reference 
value obtained by the dummies; consequently, these 
variables can be fixed within the variable combinations 
and always used in the estimation of the prediction in 
subsequent iterations. Conversely, those variables ex­
hibiting a negative effect on the predictivity can always 
be excluded from the variable combinations. Thus, 
keeping fixed those variables with a positive effect and 
excluding those variables with a negative effect is an 
effective method of eliminating a number of variables 
and increasing the stability of the model. The iterative 
process continues until all the variables have been as­
signed and no variables remain to be fixed or excluded. 

The computational procedure (as outlined in steps 
1-3 above) has been applied to the GP6 database shown 
in Table 1. The first step of the GOLPE procedure was 
carried out on the full data set without scaling of the 
variables and with an energy cut-off on positive interac­
tions >+5 kcal/mol (for this dataset). The D-optimal 
variable selection procedure was then applied in three 
runs, obtaining a reduction of variables from 8400 to 
2000, from 2000 to 1000, and from 1000 to 500 for each 
run, respectively. In the second step, an FFD strategy 
was used in order to build the combination matrix using 
a 2:1 ratio of combinations/variables and a 4:1 ratio of 
true/dummy variables. And finally, in the third step the 
fixing/excluding procedure was used for the final vari-
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Scheme 1. Flow-Chart Showing the Multiple Levels of Data Modification Generally Used in a GOLPE Procedure or 
Other 3D-QSAR Methods" 

X 
»jKS=mteaies=n 
variables=jxllxalioos=m 

4 cut-off on 
fields 

objects=mdecules=n 
variables=yiJtafons=m 

sca l ing^ / ^ no scaling 

H 

I Vl V W U- III 
° A force field calculation produces an X descriptor matrix which may be modified at levels one, two, or three and finally at level four 

to obtain the predictive statistical model. The solid arrows indicate the most appropriate procedure found in this study for a GRID force 
field and GOLPE variable selection. Data pretreatment procedures i-vi correspond to those given in Table 2. 

able selection starting from the set of 500 variables and 
using a 2024 column combination matrix. The final 
model selects only 165 out of the original 8400 variables. 

Results 

Effect of Different Data Pretreatment Methods 
o n the Predictivity. Chemometric analyses give dif­
ferent results when different weights are given to the 
variables. When prior information is available about 
the relative importance of the variables, weights should 
be assigned proportional to this contribution. It is 
known that the results obtained from projection meth­
ods such as PLS depend on scaling of the data and tha t 
the initial variance of a variable partly determines its 
importance in the final model.31 However, in general, 
no prior information regarding the contribution of each 

variable is known, and therefore a general method of 
weighting data is required. 

Autoscaling is a standard weighting method which 
generates the values of the weights that are equal to 
the inverse of the s tandard deviations of the variables. 
After autoscaling, each variable has a unit variance. 
This unit variance gives all the variables the same 
initial importance. Consequently, autoscaling may as­
sign significance to those variables which exhibit only 
small variations and therefore do not reflect real 
structural variations. To avoid this problem, the min­
imum-!/ cut-off procedure is used. Technically, this 
procedure eliminates from the analysis those variables 
which have a variance less than the minimum-o value. 

In 3D-QSAR analyses the resulting unsymmetrical 
distribution of the interaction energies requires a simple 



CoMFA of Inhibitors of Glycogen Phosphorylase b Journal of Medicinal Chemistry, 1994, Vol. 37, No. 16 2595 

Table 2. Summary of the Data Set Pretreatment Used in This Work and of the Final Models Obtained by GOLPE Variable Selection 

data pretreatment: field cut-off (kcal/mol), scaling, 
and minimum-0 cut-off (kcal/mol) 

no. of active 
variables in the 

final model" 
optimal 

dimension6 SDECC R2 SDEP^ Q2 

(i) field cut-off= +5 on positive variables, autoscaling at level 1, 
minimum-a cut-off = 0.5 

(ii) field cut-off= +5 on positive variables, no scaling at level 1, 
autoscaling at level 2 of the variables selected by the 
D-optimal algorithm, minimum-a cut-off = none 

(iii) field cut-off = +30 on positive variables, no scaling at level 1, 
autoscaling at level 2 of the variables selected by the 
D-optimal algorithm, minimum-a cut-off = none 

(iv) field cut-off= +5 on positive variables, no scaling at level 1, 
no scaling at level 2, minimum-a cut-off = none 

(v) field cut-off = +5 on positive variables, no scaling, 
no variable selection, minimum-a cut-off= 1.0 

(vi) field cut-off = +5 on positive variables, autoscaling, 
no variable selection, minimum-a cut-off= 1.0 

101 

165 

169 

134 

1050 

1050 

4 

2 

3 

0.44 0.93 0.74 0.81 

0.48 0.92 0.78 0.80 

0.73 0.82 0.96 0.67 

0.50 0.91 0.97 0.68 

0.68 0.84 1.62 0.05 

0.72 0.82 1.64 0.04 

° Number of active variables in the final model were obtained using the fractional factorial selection procedure with 25% dummy 
variables and a variable combination ratio equal to 2. b Optimal dimension is the number of LV for a model for which there is the minimum 
estimated prediction error. c SDEC is the standard deviation of error of calculation in the fitting procedure. d SDEP is the standard deviation 
of error of prediction computed as in ref 10. 

method of centering the data. Using an appropriate cut­
off on the field values, whereby only high interaction 
energy values are reduced, a well-distributed shape of 
the data may be obtained. 

Scheme 1 shows an overall view of the different data 
pretreatment and variable selection procedures. It 
should be noted that the scaling procedure may be 
performed at level one on data pretreatment or, alter­
natively, at level two only after a reasonable amount of 
noise has been eliminated by D-optimal variable selec­
tion. This work shows that this is not a trivial point 
since the results obtained depend critically on the 
procedure selected. 

In an effort to assess the effect of the different 
procedures on producing a model that accurately rep­
resents the data with optimum predictive power, each 
of the pretreatments shown in Scheme 1 were per­
formed: (i) ordinary autoscaling performed using the 
entire data set at level one, (ii) no scaling at level one 
but autoscaling at level two on a subset of variables 
selected using a D-optimal algorithm, (iii) no scaling at 
level one but autoscaling at level two on a subset of 
variables selected using a D-optimal algorithm using an 
initial cut-off of +30 kcal/mol on the interaction energy 
in the GRID calculation (as opposed to +5 kcal/mol used 
in all the other calculations), (iv) no scaling procedure 
at level one or at level two, (v) autoscaling at level one 
with a minimum-a cut-off = 1 kcal/mol without per­
forming any variable selection, and finally, (vi) using 
no scaling or variable selection, but only a minimum-a 
cut-off of 1.0 kcal/mol. The results of the data pretreat­
ment procedures illustrated in Scheme 1 are presented 
in Table 2. 

Each data pretreatment procedure produces a final 
model which can be evaluated by either SDEP (eq 4) or 
Q2 defined as 

JV 

Q2 = ! - ! ^ - ^ ) 2 / ! ^ - ^ ) (5) 
»=1 i = l 

where y\m — mean value. 
These parameters are analogous to the standard 

deviation of error of calculations (SDEC) defined as 

JV 

SDEC = [Jp1 -yij/m1'2 (6) 
j = i 

where y;calc = calculated value and R2 defined as 

JV JV 

tf = i-X<*-Aj8ZS(K-*»)" (7) 
!=1 t = l 

Both R2 and Q2 parameters are dimensionless with 
values which lie between 0 (no correlation in the data) 
and 1 (maximum correlation in the data). On the other 
hand, SDEC and SDEP have units of the actual y 
values, and since they represent the errors in either 
fitting (SDEC) or prediction (SDEP) these should be 
minimized. 

Examination of the results of procedures i—iv in Table 
2 shows that the accuracy of the model in fitting (SDEC, 
R2) is generally not influenced by different data pre­
treatments while in prediction (SDEP, Q2) different 
results are obtained. However, the similarity of the 
values obtained by procedures i - i i and iii-iv in Table 
2 illustrates the difficulty in selecting the most ap­
propriate data pretreatment procedure only on the basis 
of .R2 and Q2. Therefore, it is necessary to find an 
alternative method for evaluating the effect of the 
scaling procedures on the final model. Plotting the LV 
coefficients corresponding to each data pretreatment 
procedure allows a direct comparison of each procedure 
on the prediction of the important three-dimensional 
regions. The regions determined by each calculated 
model may then be compared to the actual experimental 
regions determined by the X-ray crystallographic bind­
ing studies. In this way, the effect of the different data 
pretreatment procedures on the predictive ability of the 
final model can be assessed. 

Data Pretreatment Procedure i. A detailed ex­
amination of the important three-dimensional regions 
found by the different data pretreatment procedures 
shows that procedure i produces chance correlations 
which are reflected in the overestimation of regions 
where it is known from the three-dimensional structure 
that there are no possibilities of such interactions. 
Comparison of Figures 1 and 2 illustrate that interac-
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Figure 1. The active site of glycogen phosphorylase b showing the amino acid residues which interact with a-D-glucose (compound 
1) as a representative molecule. It has been shown1718 that maintaining these interactions (with the labeled residues) are important 
to the activity. 

Figure 2. Contour map (in stereoview) of the PLS coefficient values (cut-off > |0.4|) at the fourth PC for the model of the 
interactions between the OH probe and all 36 targets molecules using data pretreatment procedure i. The contour regions near 
the active-site residues are not well reproduced compared with Figure 3 produced by procedure ii. In particular, the regions near 
Tyr573, Glu672, Gly675, Ser674, Asn484, and His377 are not well modeled using this procedure and the new regions which 
appear are related to noise that results from using this pretreatment method. Only compound 36 is shown for clarity. 

tions in the regions between the glucose analogue and 
GP6 catalytic site residues Glu672, Gly675, Ser674, 
His377, Tyr573, and Asn484 are not well predicted by 
this method but are known from the binding studies to 
produce significant effects on the binding affinity. There 
are several regions between Asn284, Asp283, and Leul36 
that are predicted but are known from the binding study 
to play no significant role. This is due to the fact tha t 
performing autoscaling at the beginning using all the 
data results in an overestimation of the small variables 
and the noise, consequently increasing the risk of chance 
correlations. 

Data Pretreatment Procedure ii. All the projec­
tion methods, such as PLS, require autoscaling to give 

a good estimate of the latent variables and loading 
coefficients. However, data pretreatment i has shown 
the risk associated with autoscaling of all the data from 
the beginning. Thus, Scheme 1 shows that scaling may 
be performed after a preliminary variable selection. An 
efficient way for the purpose of this selection is to choose 
variables in the loadings space according to a D-optimal 
design. The D-optimality criterion selects variables in 
such a way that most of the redundant data is discarded, 
while enough useful information is retained. 

Procedure ii illustrates the effect of performing au­
toscaling at level two (Scheme 1) after a reasonable 
amount of noise has been eliminated by a D-optimal 
variable selection. Comparison of Figures 1 and 3 shows 
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Figure 3. Contour map (in stereo view) of the PLS coefficient values (cut-off > |0.4|) at the third PC for the model of the interactions 
between the OH probe and all 36 target molecules using data pretreatment procedure ii. The illustrated regions represent the 
predicted significant positions that may be related to a change in the inhibition constant. These contours are obtained without 
using any knowledge of the actual three-dimensional structure of the ligand-GPb complexes. These positions show good correlation 
to those active-site residues which interact with the ligands as shown in Figure 1. Only compound 36 is shown for clarity. 

<\J 

Figure 4. Contour map (in stereo view) of the PLS coefficient values (cut-off > |0.4|) at the second PC for the model of the 
interactions between the OH probe and all 36 targets molecules using data pretreatment procedure iii. Shows reasonably good 
agreement with experimental regions identified in Figures 1 and 3 but results in a poor statistical model for the data (Q2 = 0.67, 
Table 2). 

tha t there is good agreement between the predicted 
regions and the experimental regions (as identified by 
the X-ray crystallographic binding studies) for the data 
pretreatment procedure ii. In particular, the interac­
tions between residues His377, Glu672, Gly675, Ser674, 
Tyr573, and Asn484 are well reproduced and identified. 
This is a more effective procedure for improving the 
prediction capability of the model. Comparison of 
Figures 2 and 3 illustrates the importance of using 
procedure ii in transforming the original data and 
reproducing the information known from the three-
dimensional X-ray structure, since there are clearly 
regions of importance that are not reproduced by 
procedure i, and subsequently these are absent from 
Figure 2. Once the best scaling procedure has been 
determined, then different models of the data (for 
example, using various probes or force fields to calculate 
the interaction energies) may be evaluated on the basis 
of the R2 and Q2 values. 

Data Pretreatment Procedure iii. The results 
obtained by procedure iii using a high cut-off of positive 
energy variables (Emax = 30 kcal/mol) in the GRID 
calculation followed by data pretreatment procedure ii 
show regions in relatively good agreement with the 
experimental results (Figure 4), although the numerical 
results are by comparison much poorer (Q2 = 0.67, Table 
2). This demonstrates the importance of a good distri­
bution of the energy variables. In fact, a high positive 

cut-off leads to instability in the coefficients of the 
model, while a positive energy cut-off similar to the 
maximum negative energy value (abut —7 kcal/mol in 
this example) results in more symmetrically distributed 
variables and increases the stability of the model. This 
result is in agreement to that found by Klebe et al.32 

using the CoMFA force field. 

Data Pretreatment Procedure iv. Performing 
GOLPE on the data set without autoscaling (procedure 
iv in Table 2) shows that no all the experimental regions 
are identified. Comparison of Figures 1 and 5 shows 
good agreement between the experimental regions and 
the important variables. However, comparison of Fig­
ures 3 and 5 shows that not all the experimental regions 
are identified using procedure iv. Specifically, the 
regions close to residues Asn484, His377, and Tyr573 
are not identified when no autoscaling of the data is per­
formed. The numerical results confirm a loss of predic-
tivity in the case of procedure iv (Q2 = 0.68, Table 2). 

When autoscaling is not performed, the initial impor­
tance of the variables is proportional to the relative 
magnitude of the interaction energy. It may be the case 
that there are some strong interactions between a given 
probe and a target; however, the corresponding three-
dimensional regions may not necessarily relate to the 
activity. Therefore, without scaling the model is forced 
to take into account this effect. And since the model is 
influenced by those regions with large energy values, 
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Figure 5. Contour map tin stereoview) of the PLS coefficient values (cut-off 2: |0.4|) at the fourth PC for the model of the 
interactions between the OH probe and all 36 targets molecules using data pretreatment procedure iv. Not all the experimental 
regions that relate to the activity are identified as in procedure ii shown in Figure 3. In particular, the 3D regions near His377 
and Asn484 are not predicted by this model. 

Figure 6. Contour map of the PLS coefficient values at the third PC for the model of the interactions between the OH probe and 
all 36 target molecules using the minimum-<7 approach v. Only high-value coefficients (cut-off > |0.4|) are shown for clarity. The 
large amount of information retained by this method make it impossible to distinguish between significant regions and noise. 

regions with small energy values may not be picked up 
by the model even though they may be significant. 

Data Pretreatment Procedures v and vi. Finally, 
the models obtained by elimination of small (1.0 kcal/ 
moll standard deviation variables without any variable 
selection (procedures v and vi in Table 2) are shown to 
contain not only the important experimental regions but 
also an elevated number of regions which do not fit the 
information known from the crystallographic data. 
Numerical and graphical analyses show that both 
models behave in a similar way (Table 2, Figure 6). The 
numerous regions found by procedures v and vi (il­
lustrated in Figure 6 for pretreatment v) render it 

impossible to interpret the significance of these predic­
tions. Clearly, the elimination of variables with a small 
standard deviation does not eliminate enough noise, and 
autoscaling is ineffective when applied under this 
condition. 

Choice of the Most Appropriate Pretreatment. 
It is evident that a single numerical comparison based 
on either the Q2 or SDEP parameters between models 
obtained from different pretreatments of the same data 
set, as in Table 2, is not sufficient to select the best 
model. However, led by knowledge of the real physical 
problem which allows comparison of the calculated to 
the actual experimental regions, it is possible to suggest 
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Figure 7. Experimental inhibition constant versus (a) cal­
culated and (b) predicted values from the model calculated 
using procedure ii in Table 2. There is good agreement 
between the experimental and calculated values both in the 
fitting (Figure 7a) and in the prediction (Figure 7b) capability 
of the model. Figure 7b indicates that compound 36 is not 
well predicted. This is expected since this compound is 
chemically different from all the other compounds in the 
dataset. 

Table 3. Comparison between the Average Experimental Error 
in the Inhibition Constant Expressed as the Natural Logarithm 
of Ki in mM and SDEC and SDEP Estimated Errors from the 
Final Model with an OH Probe Refined by GOLPE 

experimental error 
expressed in terms of In K SDEC SDEP 

0.68 O 48 0.78 

i 
that the pretreatment procedure ii in Table 2 (no scaling 
from the beginning but before the FFD variable selec­
tion) is most suitable for GOLPE variable selection with 
a GRID force field description of the present system. 

With the exception of compounds 2 and 36, the errors 
in fitting and in prediction for the final model (Figure 
7, Table 3) are in good agreement with the average 
experimental error in the Ki values. This indicates that 
GOLPE variable selection with suitable data pretreat­
ment minimizes the risks of overfitting and overpre-
dicting. 
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Table 4. Influence of Probes and Grid Spacing on the 
Prediction Capability of GOLPE Models within the Same Data 
Set 

probes 

OH 

OH 
CH3 
C-O 
Na+ 

grid spacing 
(A) 

2 

1 
1 
1 
1 

optimal 
dimension 

3 

3 
3 
3 
3 

SDEC 

0.88 

0.48 
0.54 
0.42 
0.65 

R2 

0.73 

0.92 
0.90 
0.94 
0.85 

SDEP 

1.21 
0.78 
1.10 
0.78 
0.99 

Q2 

0.49 

0.80 
0.62 
0.80 
0.65 

It was expected that compound 36 would be poorly 
predicted by the best model since it is spatially different 
from all the other compounds in the data set. This may 
illustrate the importance of selecting as many structur­
ally different compounds (as well as several of each type 
of compound) in order to obtain an accurate description 
of all the compounds in the data set. In addition, 
compound 2, the poorest inhibitor, was not well pre­
dicted by the chosen model. The crystallographic result 
showed that compound 2 bound very weakly to the 
enzyme. The difficulty in accurately fitting the ligand 
to the active site of the enzyme may therefore be 
reflected in the inability of the model to accurately 
predict this compound. 

Effect of Different Descriptions on the Predici-
tivity. With the correct scaling procedure, the param­
eters Q2 and SDEP, obtained by GOLPE, can be used 
to measure the degree of information given back from 
different descriptions of the same data set. Table 4 
shows SDEP and Q2 parameters for the glucose ana­
logue inhibitor data set described using different probes 
(hydroxy OH, methyl CH3, carbonyl oxygen C=O, and 
cationic Na+) and different grid spacings (1-A or 2-A 
spacing). 

Important information may be lost when either the 
GRID spacing is too large or the GRID probes are 
inadequately described. Examination of the values of 
R2 and Q2 in Table 4 show that if the grid spacing is 
increased from 1 to 2 A, both the fitting and the 
predicting capability drop dramatically. The chemical 
interpretation of this finding is that the 2-A spacing is 
too large for sensitive and highly directional interactions 
such as those found in multiple hydrogen bonds to be 
adequately defined, and therefore, these interactions are 
poorly described using the larger grid size or less specific 
GRID probes. In fact, the 2-A spacing makes an 
immense difference to the strength of the hydrogen-
bonding interactions, and it is exatly these interactions 
that confer specificity to the ligands. This work shows 
that the GOLPE variable selection procedure is so 
powerful that a 1-A spacing using good GRID probes is 
sufficient for eliminating noisy variables while retaining 
onl^relevant information. 

Higher values of R2 and Q2 (Table 4) for the OH and 
C=O probes illustrate that these probes are more 
favorable for making predictions in this system than 
either the Na+ or CH3 probes. This again demonstrates 
the importance of considering hydrogen-bond interac­
tions and implies that there are more interactions 
between hydroxyl groups on both the active-site residues 
of the protein and the ligands. In this particular case 
with GP6 the results indicate that the active site 
contains many more polar regions than nonpolar or 
charged regions. Using the knowledge of the three-
dimensional structure of this enzyme, it may be con-
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eluded that the GOLPE predictions are consistent with 
what is experimentally observed for the ligand-enzyme 
bound structures. Thus, it seems apparent that the 
appropriate GOLPE procedure accurately predicts the 
type and location of known regions of importance (for 
biological activity) using only the information contained 
in the ligand molecules. The significance of such a 
result has direct application toward the possible con­
struction of probable active-site residues in an unknown 
protein. 

The effect of selecting different dielectric constants 
for the GRID calculations was also investigated. In the 
GRID force field the dielectric constant influences the 
interaction energies and the shape of the field. These 
results indicate that the dielectric constant may also 
influence the predictivity of the models. For this data 
set, the best Q2 prediction value was obtained using a 
dielectric constant between 10 and 20. Generally, a 
dielectric constant of 80 is chosen to mimic the effect of 
bulk water; however, it is known that the active site of 
GPo is only partially hydrated in the presence of the 
drug molecules. Thus, the value obtained for the 
dielectric constant is consistent with that expected for 
a buried active site within a protein, as is the case in 
the GPb structure. 

Conclusions 

This work has shown that the selection of variables 
for making predictions is affected by different data 
pretreatments. Detailed examination of the calculated 
and experimental three-dimensional regions has shown 
the importance of selecting an appropriate scaling 
procedure. Comparison of the different data pretreat­
ments illustrates the difficulty in relying on only the 
values of R2 and Q2 to select the best strategy. 

In this case, led by the knowledge of the three-
dimensional crystallographic structure, it was possible 
to determine unequivocally the best computational 
method for the pretreatment of the data that accurately 
reproduced the experimental result. This was obtained 
using the D-optimal preselection with no autoscaling at 
level 1 followed by the FFD selection with autoscaling 
performed at level 2 (Scheme 1). 

It was clear that, in a 3D-QSAR context, autoscaling 
can give too much importance to those variables which 
in fact have only a small influence and therefore do not 
reflect real structural variations. However, it was 
evident that once most of the noise has been eliminated 
from the data, autoscaling improves the performance 
of the PLS models and GOLPE variable selection. It 
was also apparent that using the minimum-a cut-off is 
not sufficient in eliminating all the noise from the data, 
and therefore autoscaling after such a procedure should 
be used with caution. 

It has been shown that the power of a GOLPE 
procedure is not only in the capacity to improve the 
predictivity of a model but also in the ability to retain 
only relevant information from large amounts of redun­
dant data. Both the fitting and the prediction errors 
in the final model have been shown to be similar to the 
average experimental error in the observed inhibition 
constants. This demonstrates that GOLPE variable 
selection minimizes the risks of overfitting and over-
predicting when preceded by an appropriate data pre­
treatment. 

By choosing the same data pretreatment procedure 
for the selection of the variables, the prediction ability 
of different models (produced by using different dielec­
tric constants, probes, and grid spacing) may be com­
pared and the most accurate model for a given study 
may be chosen. Only at this stage may the values of 
R2 and Q2 be used to assess the quality of the individual 
models. Naturally, this cannot be generalized by these 
results since the best model will depend on the target 
structures, the probes, the force field, and the data set 
under investigation. 

From the X-ray crystallographic binding studies it has 
been possible to use a structure-based ligand design 
strategy to determine which interactions have a signifi­
cant contribution to the biological activity. This work 
shows that using the program combination GRID/ 
GOLPE (GRID to describe the molecular structures and 
GOLPE performed with the appropriate data pretreat­
ment and variable selection) may provide an objective 
method of obtaining similar information. However, 
since the latter method gives quantitative results, the 
possibility arises of observing features which may have 
been previously overlooked in the crystallographic 
analyses. 

The information gained from this analysis offers the 
possibility of predicting new molecules in a rational 
manner using the best model possible for the GPo data 
set. These results show that the model has good 
predictive ability and has reliably chosen regions of 
biological significance consistent with both the X-ray 
crystallographic and kinetic results. 

Experimental Section 

GRED/GOLPE Analysis. All programs and computations 
were carried out on an R4000 CRIMSOM SGI computer. A 
UNIX version of GOLPE (Version 1.O)11 takes 10 h to refine a 
model with 8400 total initial variables, single user. The 
program GRID (Version 9.O)22"24 produces the three-dimen­
sional matrix for all of the 36 compounds with the OH probe 
in 1 min, single user. 

Display of the GOLPE contour maps and structures were 
performed using the molecular graphics routine in GOLPE 
implemented on a Silicon Graphics CRIMSON terminal. 
Details of the individual complexes are published else­
where.17'18 

X-ray Crystallographic and Kinetic Binding Studies. 
Crystals of T state GP6 were grown as detailed previously.33 

The inhibition constants were established from kinetic binding 
experiments in which the enzyme was assayed in the direction 
of glycogen synthesis and activity determined from measuring 
the inorganic phosphate released.17'18 The crystallographic 
binding studies were carried out by soaking T state GP6 
crystals for 1 h in a buffered solution (10 mM iV^V-bis(2-
hydroxyethyl)-2-aminoethanesulfonic acid (BES), 0.1 mM eth-
ylenediaminetetraacetic acid (EDTA) pH 6.7) containing ap­
proximately 100 mM of the ligand under study. 

Data (to 2.3-A resolution) were collected on a Nicolet IPC 
multiwire area detector using a Rigaku RU-200 rotating anode 
X-ray source and processed (Program XENGEN34) to give data 
sets that typically were 80% complete with merging R values 
of 7% as detailed elsewhere.17'18 

The data were scaled to native to produce a set of structure 
factors, which were used to generate difference Fourier 
electron density maps using the CCP4 package of crystal­
lographic programs. Difference maps were calculated and 
examined for the presence of the ligand using the molecular 
graphics program FRODO36-36 implemented on an Evans and 
Sutherland PS390 graphics terminal. 

Final refinement of the phosphorylase—ligand complexes 
was performed on a Convex C210 using X-PLOR energy20 and 
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crystallographic least-squares minimization. Individual atomic 
B-factor refinement was performed in the final cycles resul t ing 
in final R va lues less t h a n 0.20. Potent ia l hydrogen bonds 
were assigned if t he distance between two electronegative 
a toms was less t h a n 3.3 A and if t he angle formed between 
these two atoms and the preceding atom was greater t h a n 90°. 
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